Đường trung bình của hình thang lớp 8 – Học tốt Toán 8

5/5 - (6 bình chọn)

Đường trung bình của hình thang lớp 8 là phần kiến thức cơ bản yêu cầu các bạn học sinh cần nắm vững. Đặc điểm, tính chất, các dạng bài tập liên quan đến đường trung bình hình thang sẽ được Itoan tổng hợp trong bài viết sau. Khám phá ngay:

Đường trung bình của tam giác, của hình thang

Đường trung bình của tam giác của hình thang lớp 8 cụ thể của từng phần như sau:

Đường trung bình của tam giác

Đường trung bình của tam giác là đoạn thẳng nối trung điểm hai cạnh của tam giác với nhau.

Ví dụ:

ΔABC có M là trung điểm của AB , N là trung điểm của AC nên MN là đường trung bình của tam giác ABC ⇒ MN//BC; MN=12BC

Định lí đường trung bình của hình tam giác:

– Định lí 1: Đường thẳng đi qua trung điểm một cạnh của tam giác và song song với cạnh thứ hai thì đi qua trung điểm của cạnh thứ ba.

– Định lí 2: Đường trung bình của tam giác thì song song với cạnh thứ ba và bằng nửa cạnh ấy.

Đường trung bình của hình thang

Đường trung bình của hình thang là đoạn thẳng nối trung điểm hai cạnh bên của hình thang.

Ví dụ:

Hình thang ABCD có E là trung điểm AD , F là trung điểm của BC nên EF là đường trung bình  ⇒ 

Các định lí về đường trung bình của hình thang:

Định lí 3: Đường thẳng đi qua trung điểm một cạnh bên của hình thang và song song với hai đáy thì đi qua trung điểm cạnh bên thứ hai

– Định lí 4: Đường trung bình của hình thang thì song song với hai đáy và bằng nửa tổng hai đáy.

Tổng hợp lại đường trung bình của hình thang và hình tam giác
Tổng hợp lại đường trung bình của hình thang và hình tam giác

Các dạng toán về đường trung bình của hình thang và hình tam giác

Dạng 1: Dựa vào đường trung bình của tam giác và đường trung bình của hình thang, tính độ dài các cạnh

Ví dụ: Cho tam giác ABC có AB = 6cm, AC = 10cm, BC = 14cm. Gọi D, E, F lần lượt là trung điểm của AB, AC và BC. Tính độ dài các cạnh DE, DF và EF.

Lời giải:

– Xét tam giác ABC có D là trung điểm của AB, E là trung điểm của AC

=> DE là đường trung bình của tam giác ABC

– Xét tam giác ABC có D là trung điểm của AB, F là trung điểm của BC

=> DF là đường trung bình của tam giác ABC

– Xét tam giác ABC có E là trung điểm của AC, F là trung điểm của BC

Suy ra EF là đường trung bình của tam giác ABC

Dạng 2: Chứng minh một cạnh là đường trung bình của tam giác, hình thang

Sử dụng định nghĩa đường trung bình của tam giác và hình thang.

+ Đường trung bình của tam giác là đoạn thẳng nối trung điểm hai cạnh của tam giác.

+ Đường trung bình của hình thang là đoạn thẳng nối trung điểm hai cạnh bên của hình thang.

Ví dụ: Cho tam giác ABC có I, J lần lượt là trung điểm của các cạnh AB, BC. Chứng minh IJ là đường trung bình của tam giác ABC.

Lời giải:

Xét tam giác ABC có: I là trung điểm của AB, J là trung điểm của BC

=> IJ là đường trung bình của tam giác ABC (định lý) (đpcm)

Dạng 3: Chứng minh các đường thẳng song song với nhau

Ví dụ: Cho tam giác ABC có I, J lần lượt là trung điểm của các cạnh AB, BC. Chứng minh tứ giác AIJC là hình thang.

Lời giải:

+ Xét tam giác ABC có: I là trung điểm của AB, J là trung điểm của BC

=> IJ là đường trung bình của tam giác ABC (định lý)

=> IJ // AC (định lý)

+ Xét tứ giác AIJC có: IJ // AC (cmt)

=> Tứ giác AIJC là hình thang (định nghĩa)

Dạng 4: Chứng minh các hệ thức về cạnh và góc. Tính các cạnh và góc.

Phương pháp:

Sử dụng tính chất đường trung bình của tam giác và hình thang

+ Đường trung bình của tam giác thì song song với cạnh thứ ba và bằng nửa cạnh ấy.

+ Đường trung bình của hình thang thì song song với hai đáy và bằng nửa tổng hai đáy.

+ Đường thẳng đi qua trung điểm một cạnh của tam giác và song song với cạnh thứ hai thì đi qua trung điểm cạnh thứ ba.

+ Đường thẳng đi qua trung điểm một cạnh bên của hình thang và song song với hai đáy thì đi qua trung điểm cạnh bên thứ hai.

Đường trung bình của tam giác của hình thang bài tập

Bài 1: Cho tam giác ABC có D, E lần lượt là trung điểm của AB, AC. Phát biểu nào sau đây sai?

  1. DE là đường trung bình của tam giác ABC.
  2. DE song song với BC.
  3. DECB là hình thang cân.
  4. DE có độ dài bằng nửa BC.

Hướng dẫn:

Xét tam giác ABC có D, E lần lượt là trung điểm của AB, AC

⇒ DE là đường trung bình của tam giác ABC

Hay DE//BC và DE = (1/2).BC

Hình thang cân là hình thang có hai góc kề một cạnh bằng nhau và hai cạnh bên bằng nhau nhưng bài toán này hai góc kề một cạnh đáy không bằng nhau

→ Đáp án C sai.

Chọn đáp án C.

Bài 2: Cho tam giác ABC có D, E lần lượt là trung điểm của AB, AC và DE = 4 cm. Biết đường cao AH = 6cm. Diện tích của tam giác ABC là?

A. S = 24cm2  B. S = 16cm2  C. S = 48cm2  D. S = 32cm2

Hướng dẫn:

Xét tam giác ABC có D, E lần lượt là trung điểm của AB, AC

⇒ DE là đường trung bình của tam giác ABC

Hay DE//BC và DE = 1/2BC ⇒ BC = 2DE = 2.4 = 8 cm

Khi đó ta có: S = 1/2AH.BC = 1/2.6.8 = 24cm2

Chọn đáp án A.

Bài 3: Chọn phát biểu đúng

  1. Đường trung bình của hình thang là đoạn thẳng nối hai trung điểm của hai cạnh bên của hình thoi.
  2. Đường trung bình của hình thang là đoạn thẳng nối hai trung điểm của hai cạnh đối của hình thoi.
  3. Đường trung bình của hình thang thì song song với hai đáy và bằng tổng hai hai đáy.
  4. Một hình thang có thể có một hoặc nhiều đường trung bình.

Hướng dẫn:

Định nghĩa: Đường trung bình của hình thang là đoạn thẳng nối trung điểm hai cạnh bên của hình thang.

→ Đáp án A đúng.

+ Đường trung bình của hình thang thì song song với hai đáy và bằng nửa tổng của hai đáy.

+ Một hình thang thì chỉ có 1 đường trung bình duy nhất.

Chọn đáp án A.

Như vậy là các kiến thức về đường trung bình của hình thang lớp 8 đã được Itoan tổng hợp đầy đủ phía trên.

>> Xem thêm: Tứ giác là gì? Những hình tứ giác phổ biến – Hình học Toán 8

Trả lời

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *