Tổng hợp Lý thuyết & Bài tập Quy tắc dấu ngoặc – Toán 6

5/5 - (7 bình chọn)

Sau khi nắm vững về số nguyên, quy tắc, tính chất của phép cộng, phép trừ các bạn học sinh cần nắm vững quy tắc dấu ngoặc. Đây là phần kiến thức cơ bản của chương trình Toán 6. Trong bài viết dưới đây, Itoan sẽ tổng hợp lý thuyết và bài tập quy tắc dấu ngoặc. Hãy cùng Itoan khám phá ngay thôi nào! 

Lý thuyết quy tắc dấu ngoặc

Trường hợp khi bỏ dấu ngoặc có dấu “-” đứng trước, ta phải đổi dấu tất cả các số hạng trong dấu ngoặc theo quy tắc:

  • Dấu “-” thành dấu “+”
  • Dấu “+” thành dấu “-“.

Trường hợp khi bỏ dấu ngoặc có dấu “+” đứng trước thì dấu các số hạng trong ngoặc vẫn giữ nguyên.

Ví dụ:

– (12 + 3) = -12 – 3

2 + ( 12 – 3) = 1 + 12 – 3

Tổng đại số

Một tổng đại số là một dãy các phép tính cộng, trừ các số nguyên. Trong một tổng đại số ta có thể có:

Đổi chỗ tùy ý của các số hạng kèm theo dấu của các số hạng.

Để nhóm các số hạng một cách tùy ý, ta đặt các số hạng trong dấu ngoặc.

Ví dụ: 9 3 + 1 7 = (9 + 1) (3 + 7)

= 1010

= 0

Lưu ý:

a) Tổng đại số có thể nói ngắn gọn là tổng.

b) Trong tổng đại số ta có thể:

  • Thay đổi vị trí của các số hạng kèm theo dấu của chúng.
  • Đặt dấu ngoặc để nhóm những số hạng một cách tùy ý.

Chú ý: nếu trước dấu ngoặc là dấu “-” thì phải đổi dấu tất cả các số hạng trong ngoặc.

Các dạng toán cơ bản về quy tắc dấu ngoặc

Các dạng toán cơ bản về quy tắc dấu ngoặc

Một số dạng toán cơ bản về quy tắc dấu ngoặc:

Dạng 1: Tính tổng các đại số:

Phương pháp giải:

Thay đổi vị trí số hạng và bỏ hoặc đặt dấu ngoặc một cách thích hợp rồi tính.

Dạng 2: Áp dụng quy tắc dấu ngoặc dể đơn giản biểu thức:

Phương pháp giải:

Bỏ dấu ngoặc rồi thực hiện phép tính.

Bài tập thực hành về quy tắc dấu ngoặc

Câu 1 : Tính tổng:

a) (-107) + 15 + 18 + 27;

b) 33 ++ (-30) + (-42)

c) (-14) + (-401) + (-16) + 440;

d) (-50) + (-210) + 160 + (-11)

Câu 2: Đơn giản biểu thức:

a) x + 32 + (-14 ) + 62;

b) (-190)  (+ 110) + 200

a) x + 27 + (-19) + 57;

b) (-98) – (p + 18) + 108.

Câu 3: Tính nhanh các tổng sau:

a) (2748  75)  2748;

b) (-2022)  (57  2022)

Câu 4: Bỏ dấu ngoặc rồi tính:

a) (217 + 65) + (346  217  65);

b) (45  72 + 20)  (45 + 20)

Câu 5: Tính giá trị của biểu thức:

(x + y) + z khi x = 7; y = 2; z = 1.

Đáp án:

Khi (x + y) + z khi x = 7; y = 2; z = 1, ta có:

(x + y) + z = [(7) + (2)] + (1)

= (9) + (1)

= 10.

Tại sao Toán 6 khó?

Tại sao Toán 6 khó?
Tại sao Toán 6 khó?

Môi trường mới

Lớp 6 là một môi trường học tập mới. Nó hoàn toàn khác biệt so với bậc Tiểu học. Các con phải làm quen với

  • Trường mới, lớp mới.
  • Kiến thức nhiều hơn.
  • Cách giảng dạy, kiểm tra, đánh giá kết quả học tập mới hơn.

Kiến thức mang tính trừu tượng hơn

Khác với bậc tiểu học, Toán thường là các mẫu bài toán đơn giản và thực tế. Với Toán lớp 6, kiến thức sẽ nặng hơn. Nội dung xoay quanh:

  • Các khái niệm phần tử, tập hợp, dãy số, lũy thừa, về số nguyên tố, số dương, âm.
  • Một số khái niệm mới và trừu tượng như tập hợp con, bằng nhau, rỗng hay giao của 2 tập hợp.
  • Lý thuyết, các bài tập cơ bản và đơn giản về đường thẳng, đoạn, góc.

Phương pháp học mới

Ở bậc Tiểu học, các con sẽ có một  thầy cô giáo chủ nhiệm phụ trách toàn bộ những môn chính. Trong khi đó lên THCS sẽ có nhiều thầy cô giáo hơn. Mỗimôn học sẽ là thầy cô khác nhau. Mỗi người có phong cách dạy khác nhau.

Bậc Tiểu học thường chỉ là kiểm tra 1 tiết. Tuy nhiên lên lớp 6 sẽ có nhiều dạng kiểm tra kiến thức khác nhau. Khi đến tiết học môn Toán sẽ có các bài kiểm tra miệng, 15 phút, 45 phút, học kì. Chính vì vậy áp lực học sẽ tăng lên rất nhiều.

Trên là những thông tin mà Itoan muốn gửi đến các bạn học sinh về quy tắc dấu ngoặc và câu trả lời cho thắc mắc Tại sao Toán 6 khó?. Itoan luôn đồng hành cùng các bạn trên chặng đường chinh phục tri thức. Itoan chúc các bạn học sinh học học tập vui vẻ và hiệu quả.

Xem thêm:

 

 

Trả lời

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *