Cực trị của hàm số – Hướng dẫn học tốt môn Giải tích 12 – itoan

5/5 - (4 bình chọn)

Chào mừng các bạn đã đến với bài giảng hôm nay của itoan. Hôm nay chúng ta sẽ học về Cực trị của hàm số. Bài học này nằm trong cuốn sách giáo khoa GIải tích 12 được chúng tôi biên soạn theo chương trình sách giáo khoa của Bộ giáo dục. Hy vọng bài giảng này sẽ giúp các em vượt qua các khó khăn, bỡ ngỡ khi học môn Giải tích lớp 12. Cùng đến với bài học ngay thôi các bạn!

Mục tiêu bài học Sự đồng biến nghịch biến của hàm số

  • Định nghĩa cực đại và cực tiểu của hàm số
  • Điều kiện cần và đủ để hàm số đạt cực đại hoặc cực tiểu.
  • Hiểu rõ các quy tắc để tìm cực trị của hàm số.
  • Sử dụng thành thạo quy tắc để tìm cực trị của hàm số và một số bài toán có liên quan đến cực trị.

Kiến thức cơ bản của bài học Sự đồng biến nghịch biến của hàm số

Sau đây, chúng ta cùng nhau đi học những kiến thức cơ bản nhất của bài học hôm nay, các bạn hãy tập trung để hiểu bài ngay nhé!

I. Khái niệm cực đại, cực tiểu

1. Định nghĩa

Cho hàm số y=f(x)  xác định và liên tục trên khoảng (a,b) (có thể a là  ; b là +) và điểm x0(a;b)

⛅Nếu tồn tại số h>0 sao cho f(x)<f(x0) với mọi x(x0h;x0+h) và xx0 thì ta nói hàm số f(x) đạt cực đại tại x0.

⛅Nếu tồn tại số h>0 sao cho f(x)>f(x0) với mọi x(x0h;x0+h) và xx0 thì ta nói hàm số f(x)đạt cực tiểu tại x0.

2. Chú ý

⛅Nếu hàm số f(x) đạt cực đại (cực tiểu) tại x0 thì x0 được gọi là điểm cực đại (điểm cực tiểu) của hàm số; f(x0) được gọi là giá trị cực đại (giá trị cực tiểu) của hàm số, kí hiệu là f (fCT), còn điểm x0;f(x0) được gọi là điểm cực đại (điểm cực tiểu) của đồ thị hàm số.

⛅Các điểm cực đại và điểm cực tiểu được gọi chung là điểm cực trị. Giá trị cực đại (giá trị cực tiểu) còn gọi là cực đại (cực tiểu) và được gọi chung là cực trị của hàm số.

⛅Dễ dàng chứng minh được rằng, nếu hàm số y=f(x)  có đạo hàm trên khoảng (a;b) và đạt cực đại (cực tiểu) tại x0  thì f(x0)=0

Cực trị của hàm số

II. Điều kiện đủ để hàm số có cực trị

1. Định lý 1

Giả sử hàm số f(x) liên tục trên khoảng K=(x0h;x0+h) và có đạo hàm trên K hoặc trên Kx0  với h>0

⛅Nếu f(x)>0  trên khoảng (x0h;x0+h) và f(x)<0 trên khoảng (x0h;x0+h) thì x0 là một điểm cực đại của hàm số f(x).

⛅Nếu f(x)<0 trên khoảng (x0h;x0+h) và f(x)>0 trên khoảng (x0h;x0+h) thì x0 là một điểm cực tiểu của hàm số f(x).

Ta có thể minh họa bằng bảng biến thiên như sau:

Cực trị của hàm số

Cực trị của hàm số

2. Ví dụ

Ví dụ 1: Tìm các điểm cực trị của hàm số  : f(x)=x2+1

Giải

Hàm số xác định với mọi xN

Ta có f(x)=2x

  f(x)=0 ⇒ 2x=0 ⇔ x=0

Bảng biến thiên:

Cực trị của hàm số

Từ bảng biến thiên suy ra x=0  là điểm cực đại của hàm số và đồ thị hàm số có một điểm cực đại là (0;1)

Cực trị của hàm số

III. Quy tắc tìm cực trị

1. Quy tắc 1

➀. Tìm tập xác định. Tính f(x)

➁. Tìm các điểm tại đó f(x) bằng  0 hoặc f(x) không xác định.

➂. Lập bảng biến thiên

➃. Từ bảng biến thiên suy ra các điểm cực trị

2. Định lý 2

Giả sử hàm số y=f(x) có đạo hàm cấp hai trong khoảng (x0h;x0+h), với h>0. Khi đó:

⛅Nếu f(x)=0,f(x)>0 thì x0 là điểm cực tiểu;

⛅Nếu f(x)=0,f(x)<0  thì x0 là điểm cực đại.

3. Quy tắc 2

➀. Tìm tập xác định. Tính  f(x)

➁. Tìm các nghiệm xi(i=1,2,3…) của phương trình  fϕ(x)=0

➂. Tìm f(x) và tính f(xi)

➃. Dựa vào dấu của f(xi) suy ra tính chất cực trị của điểm xi. Cụ thể

Nếu f(xi)<0 thì hàm số đạt cực đại tại điểm xi

Nếu f(xi)>0  thì hàm số đạt cực tiểu tại điểm  xi

Các bạn có thể tham khảo video hướng dẫn học bài chi tiết tại đây!

Hướng dẫn giải bài tập toán SGK Sự đồng biến nghịch biến của hàm số

Để có cái nhìn tổng quan về bài học và kiểm tra kiến thức mà mình nắm được từ đầu đến bây giờ thì chúng ta hãy cùng nhau đi làm một số bài tập SGK

Bài 11 (trang 16 sgk Giải Tích 12 nâng cao): Tìm cực trị của các hàm số sau:

Cực trị của hàm số

Lời giải:

a) Hàm số đã cho xác định trên R.

Ta có: f’(x) = x2+4x+3

Từ đó f’(x) = 0 <=> x = -1 hoặc x = -3

Bảng biến thiên

Cực trị của hàm số

Vậy hàm số đạt cực đại tại điểm x = -3, giá trị cực đại của hàm số là: f=f(-3)=-1.

Hàm số đạt cực tiểu tại điểm x = -1, giá trị cực tiển của hàm số là fCT=f(-1)=-7/3

b) Tập xác định: R

f’ (x)=x2-2x+2=(x-1)2+1>0,∀x ∈R=>f(x) luôn đồng biến nên hàm số không có cực trị.

c) Tập xác định: R \ {0}

Giải Toán 12 nâng cao | Giải bài tập Toán lớp 12 nâng cao Bai 11 Trang 16 Sgk Giai Tich 12 Nang Cao 2

Bảng biến thiên

Cực trị của hàm số

Vậy hàm số cực đại tại x = -1; f=f(-1)=-2

Hàm số cực tiểu tại x = 1; fCT=f(1)=2

d) f(x) xác định liên tục trên R.

ta có:

Giải Toán 12 nâng cao | Giải bài tập Toán lớp 12 nâng cao Bai 11 Trang 16 Sgk Giai Tich 12 Nang Cao 4

bảng biến thiên:

Cực trị của hàm số

Hàm số đạt cực đại tại x = -1, f=f(-1)=1

Hàm số đạt cực tiểu tại x = 0, fCT=f(0)=1

e) tập xác định: R

f’(x) = x4-x2;f’ (x)=0 <=> x = 0 hoặc x=±1

bảng biến thiên:

Cực trị của hàm số

Vậy hàm số đạt cực đại tại x = -1, f=f(-1)=32/15

Hàm số cực tiểu tại x = 1; fCT=f(1)=28/15

f) Tập xác định: R \ {1}

Giải Toán 12 nâng cao | Giải bài tập Toán lớp 12 nâng cao Bai 11 Trang 16 Sgk Giai Tich 12 Nang Cao 7

f’ (x)=0 <=> x = 0 hoặc x = 2

Bảng biến thiên:

Cực trị của hàm số

Vậy hàm số cực đại tại x = 0, f=f(0)=-3

Hàm số cực tiểu tại x = 2; fCT=f(2)=1

Bài 12 (trang 17 sgk Giải Tích 12 nâng cao): Tìm cực trị của hàm số sau:

Giải Toán 12 nâng cao | Giải bài tập Toán lớp 12 nâng cao Bai 12 Trang 17 Sgk Giai Tich 12 Nang Cao

Lời giải:

a) Tập xác định: [-2; 2]

Giải Toán 12 nâng cao | Giải bài tập Toán lớp 12 nâng cao Bai 12 Trang 17 Sgk Giai Tich 12 Nang Cao 1

y’=0 <=> x=±√2

Bảng biến thiên:

Cực trị của hàm số

Hàm số đạt cực tiểu tại x=-√2,yCT=y(-√2 )=-2

Hàm số đạt cực đại tại x = √2,y=y(√2)=2

b) Tập xác định: [-2√2;2√2]

Giải Toán 12 nâng cao | Giải bài tập Toán lớp 12 nâng cao Bai 12 Trang 17 Sgk Giai Tich 12 Nang Cao 3

Bảng biến thiên:

Cực trị của hàm số

Hàm số cực đại tại x = 0; y=y(0)=2√2

Hàm số không có cực tiểu.

c) Tập xác định: R

y’=(x-sin⁡2x+2)’=1-2 cos⁡2x

Cực trị của hàm số

Vậy hàm số cực đại tại điểm

Giải Toán 12 nâng cao | Giải bài tập Toán lớp 12 nâng cao Bai 12 Trang 17 Sgk Giai Tich 12 Nang Cao 6

Hàm số đạt cực tiểu tại tiểu

Giải Toán 12 nâng cao | Giải bài tập Toán lớp 12 nâng cao Bai 12 Trang 17 Sgk Giai Tich 12 Nang Cao 7

d) Tập xác định: R

y’=2 sin⁡x+2.sin⁡2x=2 sin⁡x(1+2 cos⁡x )

Cực trị của hàm số

=> y” (k π)>0 (có thể viết: y” (k π)=4+2 cos⁡(k π)

Nên hàm số đạt cực tiểu tại các điểm

Giải Toán 12 nâng cao | Giải bài tập Toán lớp 12 nâng cao Bai 12 Trang 17 Sgk Giai Tich 12 Nang Cao 9

nên hàm số đạt cực đại tại các điểm.

Giải Toán 12 nâng cao | Giải bài tập Toán lớp 12 nâng cao Bai 12 Trang 17 Sgk Giai Tich 12 Nang Cao 10

Bài 13 (trang 17 sgk Giải Tích 12 nâng cao): Tìm các hệ số a, b, c, d của hàm số f(x) = ax^3+bx^2+cx+d sao cho hàm số đạt cực tiểu tại điểm x = 0; f(0) = 0 đạt cực đại tại điểm x = 1, f(1) = 1

Lời giải:

Ta có f’(x) = 3ax2+2bx+c=>f’ (0)=c;f’ (1)=3a+2b+c

Vì f(0) = 0 =>d= 0

Hàm số đạt cực tiểu tại x = 0 nên f’(0) = 0 => c =0; f(1) = a + b = 1

Hàm số đạt cực đại tại điểm x = 1 nên f’(1) = 0 => 3a + 2b = 0

Giải Toán 12 nâng cao | Giải bài tập Toán lớp 12 nâng cao Bai 13 Trang 17 Sgk Giai Tich 12 Nang Cao

ta được a = -2; b = 3

Vật f(x) = -2x2+3x2

Thử lại f’(x) = -6x2+6x;f” (x)=-12x+6

f’’(0) > 0. Hàm số đạt cực tiểu tại điểm x = 0

f’’(1) = -6 < 0. Hàm số đạt cực đại tại x = 1

Đáp số: a = -2; b = 3; c =3; d = 0

Bài 14 (trang 17 sgk Giải Tích 12 nâng cao): Xác định các hệ số a, b, c sao cho hàm số: (x) = x3+ax2+bc+c đạt cực trị bằng 0 tại x = -2 và đồ thị của hàm số đi qua A(1; 0)

Lời giải:

f'(x) = 3x2+2ax+b

Điền kiện cần:

Hàm số đạt cực trị bằng 0 tại x = -2 => f’(2) = 0 và f(-2) = 0

Hay -4a+b+12=0 (1)và 4a-2b+c-8=0 (2)

Đồ thị đi qua A(1; 0) => a+b+c+1=0

Giải hệ Phương trình (1), (2), (3) ta được a =3; b = 0; c = -2

Điều kiện đủ:

Xét f(x) = x3+3x2-4. Ta có: đồ thị hàm số f(x) đi qua A(1; 0)

f’(x) = 3x3+6x=>f” (x)=6x+6

f’(-2)= 0; f’’(2) = -6 < 0 nên x = -2 là điểm cực đại và f(-2) = 0

Đáp số:a =3; b =0; c = -4

Bài 15 (trang 17 sgk Giải Tích 12 nâng cao): Chứng minh rằng với mọi giá trị của m, n hàm số luôn có cực đại và cực tiểu.

Giải Toán 12 nâng cao | Giải bài tập Toán lớp 12 nâng cao Bai 15 Trang 17 Sgk Giai Tich 12 Nang Cao

Lời giải:

Hàm số được viết lại là:

Giải Toán 12 nâng cao | Giải bài tập Toán lớp 12 nâng cao Bai 15 Trang 17 Sgk Giai Tich 12 Nang Cao 1

Hàm số xác định ∀x ≠ m

Giải Toán 12 nâng cao | Giải bài tập Toán lớp 12 nâng cao Bai 15 Trang 17 Sgk Giai Tich 12 Nang Cao 2

Bảng biến thiên

Cực trị của hàm số

Vậy với mọi giá trị của m, hàm số đạt được cực đại tại x = m -1 và đạt cực tiểu tại x = m + 1

Lời kết

Bài học hôm nay chính thức kết thúc! Hệ thống bài giảng và phương pháp giải các bài toán chi tiết bài học Cự trị của hàm số sẽ giúp các bạn có phương án học tập và luyện tập bài học tốt nhất . Ngoài ra, các bạn có thể tự tìm hiểu nhiều bài giảng bổ ích khác qua trang Toán của Toppy. Chúc các bạn sẽ thành công trong môn học giải tích 12!

Xem thêm: 

Phương Thoan

Là một giáo viên Toán với hơn 3 năm giảng dạy tôi mong muốn được chia sẻ nhiều hơn những kiến thức của tôi đến các em học sinh trên mọi miền tổ quốc

Trả lời

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *